Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(3): e2300702, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38036415

RESUMO

Cattle and the draught force provided by its skeletal muscle have been integral to agro-ecosystems of agricultural civilization for millennia. However, relatively little is known about the cattle muscle functional genomics (including protein coding genes, non-coding RNA, etc.). Circular RNAs (circRNAs), as a new class of non-coding RNAs, can be effectively translated into detectable peptides, which enlightened us on the importance of circRNAs in cattle muscle physiology function. Here, RNA-seq, Ribosome profiling (Ribo-seq), and peptidome data are integrated from cattle skeletal muscle, and detected five encoded peptides from circRNAs. It is further identified and functionally characterize a 907-amino acids muscle-specific peptide that is named circNEB-peptide because derived by the splicing of Nebulin (NEB) gene. This peptide localizes to the nucleus and cytoplasm and directly interacts with SKP1 and TPM1, key factors regulating physiological activities of myoblasts, via ubiquitination and myoblast fusion, respectively. The circNEB-peptide is found to promote myoblasts proliferation and differentiation in vitro, and induce muscle regeneration in vivo. These findings suggest circNEB-peptide is an important regulator of skeletal muscle regeneration and underscore the possibility that more encoding polypeptides derived by RNAs currently annotated as non-coding exist.


Assuntos
Multiômica , Proteínas Musculares , RNA Circular , Bovinos , Animais , RNA Circular/genética , RNA Circular/metabolismo , Ecossistema , Músculo Esquelético , Desenvolvimento Muscular/genética , Peptídeos/metabolismo
2.
J Anim Sci Biotechnol ; 14(1): 94, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37430306

RESUMO

BACKGROUND: During mammalian pre-implantation embryonic development (PED), the process of maternal-to-zygote transition (MZT) is well orchestrated by epigenetic modification and gene sequential expression, and it is related to the embryonic genome activation (EGA). During MZT, the embryos are sensitive to the environment and easy to arrest at this stage in vitro. However, the timing and regulation mechanism of EGA in buffaloes remain obscure. RESULTS: Buffalo pre-implantation embryos were subjected to trace cell based RNA-seq and whole-genome bisulfite sequencing (WGBS) to draw landscapes of transcription and DNA-methylation. Four typical developmental steps were classified during buffalo PED. Buffalo major EGA was identified at the 16-cell stage by the comprehensive analysis of gene expression and DNA methylation dynamics. By weighted gene co-expression network analysis, stage-specific modules were identified during buffalo maternal-to-zygotic transition, and key signaling pathways and biological process events were further revealed. Programmed and continuous activation of these pathways was necessary for success of buffalo EGA. In addition, the hub gene, CDK1, was identified to play a critical role in buffalo EGA. CONCLUSIONS: Our study provides a landscape of transcription and DNA methylation in buffalo PED and reveals deeply the molecular mechanism of the buffalo EGA and genetic programming during buffalo MZT. It will lay a foundation for improving the in vitro development of buffalo embryos.

3.
Mol Biol Evol ; 40(1)2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36585823

RESUMO

Pangolins are one of nature's most fascinating species being scales covered and myrmecophagous diet, yet relatively little is known about the molecular basis. Here, we combine the multi-omics, evolution, and fundamental proteins feature analysis of both Chinese and Malayan pangolins, highlighting the molecular mechanism of both myrmecophagous diet and scale formation, representing a fascinating evolutionary strategy to occupy the unique ecological niches. In contrast to conserved organization of epidermal differentiation complex, pangolin has undergone large scale variation and gene loss events causing expression pattern and function conversion that contribute to cornified epithelium structures on stomach to adapt myrmecophagous diet. Our assemblies also enable us to discover large copies number of high glycine-tyrosine keratin-associated proteins (HGT-KRTAPs). In addition, highly homogenized tandem array, amino content, and the specific expression pattern further validate the strong connection between the molecular mechanism of scale hardness and HGT-KRTAPs.


Assuntos
Genoma , Pangolins , Animais , Dieta
4.
Gigascience ; 122022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-37589307

RESUMO

BACKGROUND: The swamp buffalo (Bubalus bubalis carabanesis) is an economically important livestock supplying milk, meat, leather, and draft power. Several female buffalo genomes have been available, but the lack of high-quality male genomes hinders studies on chromosome evolution, especially Y, as well as meiotic recombination. RESULTS: Here, a chromosome-level genome with a contig N50 of 72.2 Mb and a fine-scale recombination map of male buffalo were reported. We found that transposable elements (TEs) and structural variants (SVs) may contribute to buffalo evolution by influencing adjacent gene expression. We further found that the pseudoautosomal region (PAR) of the Y chromosome is subject to stronger purification selection. The meiotic recombination map showed that there were 2 obvious recombination hotspots on chromosome 8, and the genes around them were mainly related to tooth development, which may have helped to enhance the adaption of buffalo to inferior feed. Among several genomic features, TE density has the strongest correlation with recombination rates. Moreover, the TE subfamily, SINE/tRNA, is likely to play a role in driving recombination into SVs. CONCLUSIONS: The male genome and sperm sequencing will facilitate the understanding of the buffalo genomic evolution and functional research.


Assuntos
Bison , Sêmen , Masculino , Feminino , Animais , Genômica , Búfalos/genética , Cromossomos
5.
Gigascience ; 122022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-37039117

RESUMO

BACKGROUND: Leeches have been used in traditional Chinese medicine since prehistoric times to treat a spectrum of ailments, but very little is known about their physiological, genetic, and evolutionary characteristics. FINDINGS: We sequenced and assembled chromosome-level genomes of 3 leech species (bloodsucking Hirudo nipponia and Hirudinaria manillensis and nonbloodsucking Whitmania pigra). The dynamic population histories and genome-wide expression patterns of the 2 bloodsucking leech species were found to be similar. A combined analysis of the genomic and transcriptional data revealed that the bloodsucking leeches have a presumably enhanced auditory sense for prey location in relatively deep fresh water. The copy number of genes related to anticoagulation, analgesia, and anti-inflammation increased in the bloodsucking leeches, and their gene expressions responded dynamically to the bloodsucking process. Furthermore, the expanded FBN1 gene family may help in rapid body swelling of leeches after bloodsucking, and the expanded GLB3 gene family may be associated with long-term storage of prey blood in a leech's body. CONCLUSIONS: The high-quality reference genomes and comprehensive datasets obtained in this study may facilitate innovations in the artificial culture and strain optimization of leeches.


Assuntos
Genoma , Sanguessugas , Animais , Sequência de Bases , Sanguessugas/genética , Evolução Biológica
6.
PLoS Negl Trop Dis ; 15(10): e0009750, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34610021

RESUMO

Fasciola gigantica and Fasciola hepatica are causative pathogens of fascioliasis, with the widest latitudinal, longitudinal, and altitudinal distribution; however, among parasites, they have the largest sequenced genomes, hindering genomic research. In the present study, we used various sequencing and assembly technologies to generate a new high-quality Fasciola gigantica reference genome. We improved the integration of gene structure prediction, and identified two independent transposable element expansion events contributing to (1) the speciation between Fasciola and Fasciolopsis during the Cretaceous-Paleogene boundary mass extinction, and (2) the habitat switch to the liver during the Paleocene-Eocene Thermal Maximum, accompanied by gene length increment. Long interspersed element (LINE) duplication contributed to the second transposon-mediated alteration, showing an obvious trend of insertion into gene regions, regardless of strong purifying effect. Gene ontology analysis of genes with long LINE insertions identified membrane-associated and vesicle secretion process proteins, further implicating the functional alteration of the gene network. We identified 852 predicted excretory/secretory proteins and 3300 protein-protein interactions between Fasciola gigantica and its host. Among them, copper/zinc superoxide dismutase genes, with specific gene copy number variations, might play a central role in the phase I detoxification process. Analysis of 559 single-copy orthologs suggested that Fasciola gigantica and Fasciola hepatica diverged at 11.8 Ma near the Middle and Late Miocene Epoch boundary. We identified 98 rapidly evolving gene families, including actin and aquaporin, which might explain the large body size and the parasitic adaptive character resulting in these liver flukes becoming epidemic in tropical and subtropical regions.


Assuntos
Doenças dos Bovinos/parasitologia , Elementos de DNA Transponíveis , Evolução Molecular , Fasciola/genética , Fasciolíase/veterinária , Genoma Helmíntico , Adaptação Fisiológica , Animais , Búfalos/parasitologia , Bovinos , Fasciola/classificação , Fasciola/fisiologia , Fasciolíase/parasitologia , Fasciolíase/fisiopatologia , Genômica , Proteínas de Helminto/genética , Interações Hospedeiro-Parasita , Filogenia
7.
Front Genet ; 12: 662609, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33833782

RESUMO

Buffalo is a luxurious genetic resource with multiple utilities (as a dairy, draft, and meat animal) and economic significance in the tropical and subtropical regions of the globe. The excellent potential to survive and perform on marginal resources makes buffalo an important source for nutritious products, particularly milk and meat. This study was aimed to investigate the evolutionary relationship, physiochemical properties, and comparative genomic analysis of the casein gene family (CSN1S1, CSN2, CSN1S2, and CSN3) in river and swamp buffalo. Phylogenetic, gene structure, motif, and conserved domain analysis revealed the evolutionarily conserved nature of the casein genes in buffalo and other closely related species. Results indicated that casein proteins were unstable, hydrophilic, and thermostable, although αs1-CN, ß-CN, and κ-CN exhibited acidic properties except for αs2-CN, which behaved slightly basic. Comparative analysis of amino acid sequences revealed greater variation in the river buffalo breeds than the swamp buffalo indicating the possible role of these variations in the regulation of milk traits in buffalo. Furthermore, we identified lower transcription activators STATs and higher repressor site YY1 distribution in swamp buffalo, revealing its association with lower expression of casein genes that might subsequently affect milk production. The role of the main motifs in controlling the expression of casein genes necessitates the need for functional studies to evaluate the effect of these elements on the regulation of casein gene function in buffalo.

8.
Animals (Basel) ; 11(3)2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33809937

RESUMO

The buffalo was domesticated around 3000-6000 years ago and has substantial economic significance as a meat, dairy, and draught animal. The buffalo has remained underutilized in terms of the development of a well-annotated and assembled reference genome de novo. It is mandatory to explore the genetic architecture of a species to understand the biology that helps to manage its genetic variability, which is ultimately used for selective breeding and genomic selection. Morphological and molecular data have revealed that the swamp buffalo population has strong geographical genomic diversity with low gene flow but strong phenotypic consistency, while the river buffalo population has higher phenotypic diversity with a weak phylogeographic structure. The availability of recent high-quality reference genome and genotyping marker panels has invigorated many genome-based studies on evolutionary history, genetic diversity, functional elements, and performance traits. The increasing molecular knowledge syndicate with selective breeding should pave the way for genetic improvement in the climatic resilience, disease resistance, and production performance of water buffalo populations globally.

9.
J Agric Food Chem ; 69(1): 592-601, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33346638

RESUMO

Beef is considered to be a good quality meat product because it contains linoleic acid and specific proteins, which can bring significant benefits to health. Circular RNAs (circRNAs) have been reported to regulate skeletal myogenesis. RNA-seq was used to investigate the circRNA molecular regulatory mechanisms with respect to differences in muscle quality between buffalo and cattle. A total of 10,449 circRNA candidates were detected, and 1128 of these were found to be differentially expressed between cattle and buffalo muscle tissue libraries. Differentially expressed 23 circRNAs were verified by qPCR. CircEch1, one of the most up-regulated circRNAs during muscle development, was subsequently characterized. CCK-8 (65.05 ± 2.33%, P < 0.0001), EdU (72.99 ± 0.04%, P < 0.001), and Western blotting assays showed that overexpression of circEch1 inhibited the proliferation of bovine myoblasts but promoted differentiation. In vivo studies suggested that circEch1 stimulates skeletal muscle regeneration. These results demonstrate that the novel regulator circEch1 induces myoblast differentiation and skeletal muscle regeneration. They also provide new insights into the mechanisms of circRNA regulation of beef quality.


Assuntos
Bovinos/genética , Desenvolvimento Muscular , Músculo Esquelético/citologia , RNA Circular/metabolismo , Animais , Búfalos , Bovinos/crescimento & desenvolvimento , Bovinos/metabolismo , Proliferação de Células , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , RNA Circular/genética
10.
Genes (Basel) ; 11(11)2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33238553

RESUMO

Heat-shock proteins (HSP) are conserved chaperones crucial for protein degradation, maturation, and refolding. These adenosine triphosphate dependent chaperones were classified based on their molecular mass that ranges between 10-100 kDA, including; HSP10, HSP40, HSP70, HSP90, HSPB1, HSPD, and HSPH1 family. HSPs are essential for cellular responses and imperative for protein homeostasis and survival under stress conditions. This study performed a computational analysis of the HSP protein family to better understand these proteins at the molecular level. Physiochemical properties, multiple sequence alignment, and phylogenetic analysis were performed for 64 HSP genes in the Bubalus bubalis genome. Four genes were identified as belonging to the HSP90 family, 10 to HSP70, 39 to HSP40, 8 to HSPB, one for each HSPD, HSPH1, and HSP10, respectively. The aliphatic index was higher for HSP90 and HSP70 as compared to the HSP40 family, indicating their greater thermostability. Grand Average of hydropathicity Index values indicated the hydrophilic nature of HSP90, HSP70, and HSP40. Multiple sequence alignment indicated the presence of highly conserved consensus sequences that are plausibly significant for the preservation of structural integrity of proteins. In addition, this study has expanded our current knowledge concerning the genetic diversity and phylogenetic relatedness of HSPs of buffalo with other mammalian species. The phylogenetic tree revealed that buffalo is more closely related to Capra hircus and distantly associated with Danio rerio. Our findings provide an understanding of HSPs in buffalo at the molecular level for the first time. This study highlights functionally important HSPs and indicates the need for further investigations to better understand the role and mechanism of HSPs.


Assuntos
Búfalos/genética , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Filogenia , Animais , Evolução Molecular , Família Multigênica , Polimorfismo de Nucleotídeo Único
11.
Natl Sci Rev ; 7(3): 686-701, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34692087

RESUMO

Domesticated buffaloes have been integral to rice-paddy agro-ecosystems for millennia, yet relatively little is known about the buffalo genomics. Here, we sequenced and assembled reference genomes for both swamp and river buffaloes and we re-sequenced 230 individuals (132 swamp buffaloes and 98 river buffaloes) sampled from across Asia and Europe. Beyond the many actionable insights that our study revealed about the domestication, basic physiology and breeding of buffalo, we made the striking discovery that the divergent domestication traits between swamp and river buffaloes can be explained with recent selections of genes on social behavior, digestion metabolism, strengths and milk production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...